m at h . FA ] 3 0 D ec 1 99 8 CLASSIFYING TIGHT WEYL - HEISENBERG FRAMES
نویسنده
چکیده
Abstract. A Weyl-Heisenberg frame for L(R) is a frame consisting of translates and modulates of a fixed function in L(R), i.e. (EmbTnag)m,n∈Z , with a, b > 0, and g ∈ L(R). In this paper we will give necessary and sufficient conditions for this family to form a tight WH-frame. This allows us to write down explicitly all functions g so that (EmbTnag) is an orthonormal basis for L (R). These results give a simple direct classification of the alternate dual frames to Weyl-Heisenberg frames (a result due to Janssen).
منابع مشابه
h . FA ] 2 4 N ov 1 99 8 Weyl - Heisenberg frames for subspaces of L 2 ( R )
AWeyl-Heisenberg frame {EmbTnag}m,n∈Z = {eg(·−na)}m,n∈Z for L2(R) allows every function f ∈ L2(R) to be written as an infinite linear combination of translated and modulated versions of the fixed function g ∈ L2(R). In the present paper we find sufficient conditions for {EmbTnag}m,n∈Z to be a frame for span{EmbTnag}m,n∈Z , which, in general, might just be a subspace of L2(R) . Even our conditio...
متن کاملPlancherel transform criteria for Weyl-Heisenberg frames with integer oversampling
We investigate the relevance of admissibility criteria based on Plancherel measure for the characterization of tight Weyl-Heisenberg frames with integer oversampling. For this purpose we observe that functions giving rise to such Weyl-Heisenberg frames are admissible with regard to the action of a suitably defined type-I discrete group G. This allows to relate the construction of Weyl-Heisenber...
متن کامل